вторник, 29 мая 2018 г.

Mudança média filtro ordem


Assuma o filtro IIR de primeira ordem: yn alfa xn (1 - alfa) yn - 1 Como posso escolher o parâmetro alpha s. t. O IIR aproxima o melhor possível o FIR, que é a média aritmética das últimas k amostras: Onde n em k, infty), o que significa que a entrada para o IIR pode ser maior do que k e ainda Id gostaria de ter a melhor aproximação da Significa as últimas entradas k. Eu sei que o IIR tem uma resposta de impulso infinita, daí estou procurando a melhor aproximação. Eu estou feliz por uma solução analítica, seja para ou. Como esses problemas de otimização podem ser solucionados, dado o único IIR de 1ª ordem. Perguntou 6 de outubro 11 às 13:15 Precisa seguir yn alfa xn (1 - alfa) yn - 1 precisamente ndash Phonon 6 de outubro 11 às 13:32 Isso é obrigado a se tornar uma aproximação muito pobre. Você pode pagar qualquer coisa mais do que um número de ordem IIR ndash leftaroundabout 6 de outubro 11 às 13:42 Você pode querer editar sua pergunta para que você não use yn para significar duas coisas diferentes, p. A segunda equação exibida poderia ler zn frac xn cdots frac xn-k1, e você pode querer dizer qual é exatamente o seu critério de cotas quanto possível, por exemplo, Você quer que o yn-znvert seja o mais pequeno possível para todos os n, ou vert yn-znvert2 para ser o menor possível para todos os n. Ndash Dilip Sarwate 6 de outubro 11 às 13:45 niaren Eu sei que este é um post antigo, então se você se lembrar: como sua função 39f39 derivou eu codificou uma coisa semelhante, mas usando as funções de transferência complexas para FIR (H1) e IIR (H2 ) E depois fazendo soma (abs (H1 - H2) 2). Eu comparei isso com sua soma (fj), mas obtive diferentes resultados resultantes. Pensei em perguntar antes de arar através da matemática. Ndash Dom Jun 7 13 às 13:47 OK, vamos tentar derivar o melhor: começar yn ampamp alpha xn (1 - alpha) yn - 1 ampamp alfa xn (1 - alfa) alfa xn-1 (1 - alfa) 2 yn - 2 ampamp alpha xn (1 - alfa) alfa xn-1 (1-alfa) 2 alfa xn-2 (1-alfa) 3 yn-3 fim para que o coeficiente de xn-m seja alfa (1-alfa) m . O próximo passo é tomar derivativos e equivaler a zero. Olhando para um enredo do derivado J para K 1000 e alfa de 0 para 1, parece que o problema (como eu configurei) é mal posado, porque a melhor resposta é alfa 0. Eu acho que há um erro aqui. A maneira como deve ser de acordo com os meus cálculos é: usar o código a seguir em MATLAB produz algo equivalente embora diferente: de qualquer forma, essas funções têm mínimo. Então, vamos assumir que realmente nos preocupamos com a aproximação sobre o suporte (comprimento) do filtro FIR. Nesse caso, o problema de otimização é apenas: Soma J2 (alfa) (alfa (1-alfa) m-frac) 2 Traçar J2 (alfa) para vários valores de K versus resultados alfa na data nas parcelas e tabela abaixo. Para K 8. alfa 0.1533333 Para K 16. alfa 0.08 Para K 24. alfa 0.0533333 Para K 32. alfa 0.04 Para K 40. alfa 0.0333333 Para K 48. alfa 0.0266667 Para K 56. alfa 0.0233333 Para K 64. alfa 0.02 Para K 72. alpha 0.0166667 As linhas tracejadas vermelhas são 1K e as linhas verdes são alfa, o valor de alfa que minimiza J2 (alfa) (escolhido de tt alfa 0: .01: 13). Há uma boa discussão sobre este problema no processamento de sinal incorporado com a arquitetura de micro-sinal. Aproximadamente entre as páginas 63 e 69. Na página 63, inclui uma derivação do filtro de média móvel recursiva exata (que Niaren deu em sua resposta), por conveniência em relação à seguinte discussão, corresponde à seguinte equação de diferença: A aproximação Que coloca o filtro na forma que você especificou exige assumindo que x aproximadamente y, porque (e cito a partir da página 68) y é a média das amostras xn. Essa aproximação nos permite simplificar a equação de diferença anterior da seguinte maneira: Configurando alfa, chegamos à sua forma original, y alfa xn (1-alfa) y, que mostra que o coeficiente que você deseja (em relação a essa aproximação) é exatamente 1 (Onde N é o número de amostras). Essa aproximação é a melhor em algum aspecto. É certamente elegante. Heres como a resposta de magnitude se compara a 44,1 kHz para N 3 e como N aumenta para 10 (aproximação em azul): Como a resposta de Peters sugere, aproximar um filtro FIR com um filtro recursivo pode ser problemático sob uma norma de mínimos quadrados. Uma ampla discussão sobre como resolver este problema em geral pode ser encontrada na tese JOSs, Técnicas para Design de Filtro Digital e Identificação do Sistema com Aplicação ao Violino. Ele defende o uso da Norma de Hankel, mas nos casos em que a resposta de fase não importa, ele também cobre o Método Kopecs, que pode funcionar bem neste caso (e usa uma norma L2). Uma ampla visão geral das técnicas na tese pode ser encontrada aqui. Eles podem produzir outras aproximações interessantes. Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Como o nome indica, o filtro de média móvel opera pela média de um número de pontos do sinal de entrada para produzir cada ponto no sinal de saída. Na forma da equação, esta é escrita: onde é o sinal de entrada, é o sinal de saída e M é o número de pontos na média. Por exemplo, em um filtro de média móvel de 5 pontos, o ponto 80 no sinal de saída é dado por: Como alternativa, o grupo de pontos do sinal de entrada pode ser escolhido simetricamente em torno do ponto de saída: Isso corresponde à alteração da soma na Eq . 15-1 de: j 0 a M -1, para: j - (M -1) 2 para (M -1) 2. Por exemplo, em um filtro de média móvel de 10 pontos, o índice, j. Pode correr de 0 a 11 (média de um lado) ou -5 a 5 (média simétrica). A média simétrica requer que M seja um número ímpar. A programação é ligeiramente mais fácil com os pontos em apenas um lado no entanto, isso produz uma mudança relativa entre os sinais de entrada e de saída. Você deve reconhecer que o filtro de média móvel é uma convolução usando um kernel de filtro muito simples. Por exemplo, um filtro de 5 pontos possui o kernel de filtro: 82300, 0, 15, 15, 15, 15, 15, 0, 08230. Ou seja, o filtro médio móvel é uma convolução do sinal de entrada com um impulso retangular com um Área de um. A Tabela 15-1 mostra um programa para implementar o filtro de média móvel. Resposta de freqüência do Filtro Médico de Corrente A resposta de freqüência de um sistema LTI é o DTFT da resposta de impulso. A resposta de impulso de uma média móvel em L é desde a movimentação O filtro médio é FIR, a resposta de freqüência reduz-se à soma finita. Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função, a fim de determinar quais frequências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro desatualizado. Certas frequências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Nós podemos fazer muito melhor do que isso. O argumento acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)). (1-exp (-iomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright cópia 2000- - Universidade da Califórnia, Berkeley

Комментариев нет:

Отправить комментарий